Estimation of regional genetic parameters for mortality and 305-d milk yield of US Holsteins in the first 3 parities.


Several research reports have indicated increasing dairy cow mortality in recent years. The objectives of this research were to characterize the phenotypic differences in mortality in the first 3 parities across 3 regions of the United States to estimate the heritability of mortality of Holstein cows across regions and parities, and to estimate genetic and environmental correlations between milk yield and mortality across parities and regions. Dairy Herd Information (DHI) milk yield and mortality data were obtained from 3 different US regions: the Southeast (SE), Southwest (SW), and Northeast (NE). A total of 3,522,824 records for the first 3 parities were used: 732,009 (SE), 656,768 (SW), and 2,134,047 (NE) from 1999 to 2008. Cows that received a termination code of 6--"Cow died on the dairy; downer cows that were euthanized should be included here"--were given a mortality score of 2 (dead), whereas all other codes were assigned a mortality score of 1 (alive). Average annual mortalities in the first 3 parities across regions ranged from 2.2 to 7.2%, with mortality frequency increasing with increasing parity across all regions and with the SE having the highest mortality frequency. For genetic analysis, a 2-trait (305-d milk yield and mortality) linear-threshold animal model that fitted fixed effects of herd-year (for 305-d milk yield), cow age, days in milk (in month classes), month-of-termination, and random effects of herd-year (for mortality), animal, and residual was implemented. The model was used to estimate variance components separately for each region and parity. Heritability estimates for mortality were similar for all regions and parities, ranging from 0.04 to 0.07. Genetic correlations between mortality and 305-d milk yield across the first 3 parities were 0.14, 0.20, and 0.29 in SE; -0.01, 0.01, and 0.31 in SW; and 0.28, 0.33, and 0.19 in NE. We detected an adverse genetic relationship between milk production and mortality; however, the moderate magnitudes of the genetic correlations suggest that indices that include both milk yield and mortality could be effective in identifying sires that would provide opportunities for minimizing death loss even when selecting for increased milk yield.


6 Figures and Tables

Download Full PDF Version (Non-Commercial Use)